Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Winai leawsuwan, ${ }^{\text {a }}$ Miriam Bru Roig ${ }^{\mathbf{b}}$ and Michael Bolte ${ }^{\mathrm{c}^{*}}$

${ }^{\mathrm{a}}$ Institut für Organische Chemie und Chemische Biologie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, ${ }^{\mathbf{b}}$ Departament de Química Inorgànica i Orgànica, University Jaume I, Campus Riu Sec, Avenida Sos Baynat s/n, 12071 Castellón de la Plana, Spain, and ${ }^{\text {' }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.078$
$w R$ factor $=0.199$
Data-to-parameter ratio $=17.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,2,7,7-Tetraphenyl-2,7-dihydrodibenz[c,e]oxepine

The structure of the title compound, $\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{O}$, has previously been reported by Hirano, Toyota \& Toda [Heterocycles (2004), 62, 749-756]. Since these authors did not publish any coordinates, we present here a redetermination of this structure using new intensity data. The molecule has chemical but not crystallographic C_{2} symmetry. The central sevenmembered ring adopts a twist-boat conformation.

Comment

2,2,7,7-Tetraphenyl-2,7-dihydrodibenz[$c, e]$ oxepine, (I), was obtained as an unexpected product during our investigation of the $\mathrm{Bi}(\mathrm{OTf})_{3}$-catalysed (OTf is trifluoromethanesulfonate) intramolecular benzylation of arenes (Rueping et al., 2006). Surprisingly, the etherification yielding the oxepine derivative occurred more rapidly than the Friedel-Crafts-type C-alkylation of the arene ring. The product could be isolated in good yield, suggesting that this methodology may be applied in the synthesis of further oxepine derivatives.

(I)

A perspective view of (I) is shown in Fig. 1. It shows molecular but not crystallographic C_{2} symmetry. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 5.27 plus one update; $M O G U L$ Version 1.1; Allen, 2002). The central seven-membered ring adopts a twistboat conformation (Table 1). The dihedral angle between the two benzene rings of the biphenyl system is 47.43 (12) ${ }^{\circ}$. Since no coordinates from the previous structure determination (Hirano et al., 2004) are available, no comparison between the two structure determinations can be made. However, Carey et al. (2002) published the structure of the toluene solvate of the title compound. A least-squares fit of (I) with this solvate (r.m.s. deviation for all non-H atoms $=0.201 \AA$) shows that the molecular conformation is not significantly influenced by the solvent (Fig. 2).

Experimental

2, 2^{\prime}-Bis(diphenylhydroxymethyl)biphenyl ($0.2593 \mathrm{~g}, 0.50 \mathrm{mmol}$) and $\mathrm{Bi}(\mathrm{OTf})_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.0036 \mathrm{~g}, 0.005 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ were added

Received 14 March 2006 Accepted 14 March 2006
\qquad

Figure 1
Perspective view of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
to a 10 ml round-bottomed flask and the reaction mixture was refluxed for 2 h . The reaction mixture was allowed to cool to room temperature and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right)$, using hexane and ethyl acetate ($50: 1$) as eluent, affording (I) (yield $0.2009 \mathrm{~g}, 80 \%$). Slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (I) gave colourless crystals of (I) (m.p. >503 K).

Crystal data

$\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{O}$
$M_{r}=500.60$
Monoclinic, P_{1} / c
$a=13.6436(17) \AA$
$b=11.5482(9) \AA$
$c=17.1442(19) \AA$
$\beta=90.306(10)^{\circ}$
$V=2701.2(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.231 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 10503
reflections
$\theta=3.6-27.6^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.24 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Stoe IPDS-II two-circle diffractometer

ω scans

Absorption correction: none
31915 measured reflections
6240 independent reflections
3318 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.097$
$\theta_{\text {max }}=27.7^{\circ}$
$h=-17 \rightarrow 17$
$k=-14 \rightarrow 15$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.199$
$S=0.96$
6240 reflections
353 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.089 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0083(19)
\end{aligned}
$$

Figure 2
Least-squares fit of (I) (solid lines) with the toluene solvate (dashed lines).

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{O} 1$	$1.463(3)$	$\mathrm{C} 52-\mathrm{C} 62$	$1.496(4)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.463(3)$		
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$121.4(2)$		
			$70.8(3)$
$\mathrm{C} 61-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2$	$-36.7(3)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 61-\mathrm{C} 62$	$-7.1(4)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 51$	$-45.5(3)$	$\mathrm{C} 1-\mathrm{C} 61-\mathrm{C} 62-\mathrm{C} 52$	$-46.2(4)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 51-\mathrm{C} 52$	$66.2(3)$	$\mathrm{C} 51-\mathrm{C} 52-\mathrm{C} 62-\mathrm{C} 61$	
$\mathrm{C} 2-\mathrm{C} 51-\mathrm{C} 52-\mathrm{C} 62$	$3.3(4)$		

H atoms were located in a difference map, but were repositioned with idealized geometry and refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model $(\mathrm{C}-\mathrm{H}=$ 0.95 A).

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Carey, K. A., Clegg, W., Elsegood, M. R. J., Golding, B. T., Hill, M. N. S. \& Maskill, H. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2673-2679.
Hirano, S., Toyota, S. \& Toda, F. (2004). Heterocycles, 62, 749-756.
Rueping, M., Nachtsheim, B. \& Ieawsuwan, W. (2006). Adv. Synth. Catal. Submitted.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

